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Uncovering the intimate relationship between lipids, cholesterol
and GPCR activation
Joanne Oates and Anthony Watts
The membrane bilayer has a significant influence over the

proteins embedded within it. G protein-coupled receptors

(GPCRs) form a large group of membrane proteins with a vast

array of critical functions, and direct and indirect interactions

with the bilayer are thought to control various essential aspects

of receptor function. The presence of cholesterol, in particular,

has been the focus of a number of recent studies, with varying

receptor-dependent effects reported. However, the possibility

of specific cholesterol binding sites on GPCRs remains

debatable at present. A deeper structural and mechanistic

understanding of the complex and delicately balanced nature

of GPCR–bilayer interactions has only been revealed so far in

studies with the non-ligand binding, class A GPCR, rhodopsin.

Further investigations are essential if we are to appreciate fully

the role of the bilayer composition in GPCR activation and

signalling; indeed, recent improvements in GPCR expression

and purification, along with development of novel

reconstitution methods should make these types of biophysical

investigations much more accessible. In this review we

highlight the latest research on GPCR–membrane interactions

and some of the tools available for more detailed studies.
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Introduction
Our understanding of the structure and function of G

protein-coupled receptors (GPCRs) has increased mark-

edly over the past few years due, not least, to innovative

purification strategies, which have facilitated structure

determination by X-ray crystallography. Of particular

note is the work with the b1 and b2 adrenergic (b2AR)

and adenosine A2A receptors where high-resolution struc-

tures have been reported with a variety of bound ligands,

both agonist and antagonist, natural and synthetic

[1,2,3�,4–6]. These structures have revealed key features

of the ligand binding pocket and the specificity of ligand
Please cite this article in press as: Oates J, Watts A. Uncovering the intimate relationship be

j.sbi.2011.09.007

www.sciencedirect.com 
receptor interactions; critical information in the design of

new pharmaceuticals targeted to GPCRs. Crystal struc-

tures, in addition to other experimental data, have also

begun to inform on the conformational changes that take

place during receptor activation. In this case rigid-body

movements and rotations of the transmembrane helices

are responsible for changes which allow favourable inter-

action with G proteins [3�,7,8]. Despite this recent

explosion in knowledge, understanding the influence of

the bilayer environment on the structure, activation, and

signalling of a GPCR is somewhat less advanced. A

number of crystal structures have revealed tantalising

glimpses of specifically bound lipid and other membrane

components [1,2,9��,10]. However, care must be taken

when interpreting these data since any conclusions about

biological relevance must also include in vivo and func-

tional data to support crystallographic observations.

Bilayer components have been known to alter the phys-

iological profiles of a vast number of membrane proteins for

some while [11–13], either through specific interactions

with the protein itself or alteration of membrane physical

properties such as curvature, lateral pressure, and bilayer

thickness (reviewed in [14]). In the case of GPCRs, the

available evidence also points to a clear link between

receptor structure and function, and membrane location

and composition (Figure 1 summarises the possible mech-

anisms by which GPCRs are influenced by the membrane).

Until recently, the role of the bilayer in GPCR signalling

had been, to a certain extent, under-investigated; the

exception is early studies with rhodopsin, which showed

no lipid-type specificity but rather regulation by choles-

terol [13,15–17]. Rhodopsin remains the model GPCR and

is largely responsible for our current understanding of

GPCR–bilayer interactions. The possibility of a close

relationship between cholesterol and GPCRs in general

has drawn much attention recently, as new evidence from

both functional and structural studies has come to light for a

number of receptors, in addition to rhodopsin. One

possible role of cholesterol may be to target receptors to

specific membrane regions where co-localisation with d-

own-stream signalling components occurs. In fact, the in
vivo environment should always be considered when inves-

tigating membrane–GPCR interactions. In this review we

discuss lipid–GPCR interactions focusing specifically on

rhodopsin, the association of GPCRs and cholesterol, and

the possibility of membrane-domain targeting in vivo. We

highlight recent progress, areas of controversy, and where

more research is needed. The technical challenges and

most appropriate methodologies for further investigations

will also be considered.
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Figure 1
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GPCR–bilayer interactions. GPCR activation and signalling can be modulated by the surrounding membrane environment via a number of

mechanisms. Alterations in lipid composition can affect physical properties of the bilayer including curvature and fluidity, while specific interactions

between bilayer components and a GPCR have also been demonstrated. Receptor targeting to lipid domains may be important in regulation of

downstream signalling.
The in vivo environment of GPCRs
GPCRs are distributed throughout many tissue types and

subcellular compartments. The lipid composition of

membranes within these regions can vary considerably

and therefore knowledge of the particular location of a

GPCR is the first step in understanding the influence of

the bilayer (for a review of cellular lipid distribution see

[18]). Moreover, alterations in the composition of an

individual bilayer are believed to control many aspects

of GPCR signalling (see examples in the following sec-

tions). With this in mind, in vitro investigations of GPCRs,

particularly those in detergent, must also include suitable

assays to determine biological functions such as ligand

binding [19] and G protein coupling in the non-native

lipid/detergent environment. Furthermore, differences

between detergent and native-like lipid environments

have been shown to modify receptor–receptor associ-

ations [20��].

One proposed mechanism by which the membrane con-

trols GPCR function is through targeting to specific

regions of the bilayer which form highly ordered domains,

also known as lipid rafts and caveolae [21–23]. Although

the precise nature of such domains remains hotly debated

there are several lines of evidence which link GPCR
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regulation with these structures. Firstly, fatty acid modi-

fications, such as palmitoylation of cysteine residues in

the C-terminal helix 8, have been suggested to address

receptors to ordered domains [24], influencing receptor

activity, G protein coupling, and trafficking; effects well

documented for the serotonin and oxytocin receptors [25]

(reviewed in [26,27]). Indeed, the non-random distri-

bution of Ga subtypes in the membrane is believed to

be a key factor imparting specificity on activation of

downstream signals by the oxytocin receptor [27]. Sec-

ondly, the intimate association between the lipid-order-

ing cholesterol and GPCRs, which will be explored

further below; and finally, the isolation of GPCRs with

detergent-resistant membranes, and other proposed raft

components, for example, the association of b2AR with

caveolin 3 in myocyte membranes [28]. The specific

influence of receptor targeting and modifications are

highly varied with new studies being published at pace.

Investigations with the mu and delta opioid receptors

showed a differing response to the removal of cholesterol,

linked to differential membrane localisation [29�]. The

most recent data show palmitoylation of the dopamine D1

receptor is linked to changes in receptor internalisation

and turnover [30]; and leads to upregulation of human

proteinase-activated receptor 2 [31].
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Whatever emerges on the nature of ordered lipid

domains, it is clear that the membrane environment

impacts heavily on function; the hypothesis that specific

properties of this environment result in co-localisation

with downstream signalling components is attractive, and

goes a long way to providing a rationale for regulation and

specificity in GPCR activation. The mechanisms by

which membrane properties control activation are how-

ever rather ill-defined, although it seems likely to involve

either indirect bilayer effects, specific membrane–GPCR

interactions, or a combination of both.

Rhodopsin–membrane interactions
A detailed understanding of the interaction between the

membrane environment and GPCR activation is best

characterised for rhodopsin (the details of which have

been reviewed recently elsewhere [32]). Conformational

changes between the MI and MII states in rhodopsin are

tightly regulated by physical properties of the membrane

in addition to possible direct membrane–receptor inter-

actions. In terms of bilayer properties, current data imply

a role for lipids with a phosphatidylethanolamine (PE)

head-group, those containing unsaturated acyl chains of

docoshexanoyl acid (DHA (22:6)) and cholesterol

[16,33,34��]. Flash photolysis studies first showed that

the equilibrium between the two states is shifted towards

MII due to the presence of lipid with a PE head-group

[35]. This lead to the proposal of the flexible surface

model [36], in which negative curvature stress between

the membrane and protein is matched by the presence of

PE lipid. Further experiments using plasmon waveguide

resonance (PWR) also demonstrated that an increased PE

content correlates with an increase in affinity of the

receptor for transducin [37]. A combination of molecular

dynamics (MD) simulations and NMR experiments

suggest that the highly flexible DHA chains penetrate

deeper into the protein and lower the energy barrier for

transition to the MII state [33,34��,38–40]. Depletion of

DHA has also been shown to affect rhodopsin function in

a biological context [41]. Cholesterol inhibits activation

probably by reducing acyl chain flexibility and the free

volume in the core of the bilayer [15,42] in addition to

promoting association with ordered lipid domains.

While it remains clear that bilayer characteristics influence

the rhodopsin photocycle, a direct interaction between

lipid and protein is less clear. Early work using nitroxide

spin label electron spin resonance (ESR), showed no pre-

ferential binding between membrane components of dif-

fering type (phosphatidylcholine, cardolipin and stearic

acid) [13]. However, ‘bound’ lipid was observed in crystal

structures although the type could not be resolved [10]. A

specific interaction with DHA chains was evidenced by

MD and NMR [33,40], and a direct interaction with the PE

head-group has been proposed [34��]. In the latest work it

was demonstrated that the PE-dependent MI–MII tran-

sition could only partially be explained by curvature stress
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with an additional component correlating to the hydrogen

bonding potential of the head-group. Rhodopsin may also

undergo a specific interaction with cholesterol as demon-

strated from FRET studies [16] and more recently probed

by MD simulations [43].

An appreciation of the biological context of rhodopsin

should also be considered in explanation of the data. The

rod outer segment (ROS) disk membrane membrane

contains a higher proportion of PE and DHA lipids,

and less cholesterol than the plasma membrane where

the protein remains in an inactive state [15]. The ROS

membrane is also asymmetric with respect to lipid distri-

bution, PE being much more abundant in the outer leaflet

of the membrane relative to the plasma membrane, and

this asymmetry will likely result in different stresses on

those parts of the protein residing in the inner and outer

leaflet. Asymmetric bilayers are, however, much more

difficult to recreate in vitro, which means at present any

significance of asymmetric lipid distribution cannot be

experimentally verified.

Cholesterol and GPCRs
Relative to other membrane components, the influence of

cholesterol on GPCR activity is better documented (for a

comprehensive review see [44��]). The nature of the

interaction however remains ambiguous, whether

ascribed to indirect bilayer effects, or specific receptor

binding and putative ‘non-annular’ binding sites [45].

Despite a wealth of evidence for cholesterol modification

of GPCR activity the specific response to the presence of

cholesterol appears very much receptor-dependent, with

reports of both upregulation and downregulation and of

direct and indirect action. The data are further confused

when one considers that a number of GPCRs can be

expressed in the — cholesterol free — Escherichia coli cell

membrane as stable, ligand-binding [46–48], and G-

protein activating receptors [49].

Evidence for a direct interaction between cholesterol and

GPCRs has expanded rapidly in recent years, sparked by

the discovery of ‘bound’ cholesterol in the crystal structure

of the b2AR, and subsequent identification of a consensus

cholesterol binding motif (CCM) in almost half of all family

A GPCRs (Figure 2) [9��]. This motif comprises one

residue from helix II, and three from IV. A charged residue

at the intracellular face of helix IV is proposed to form the

strongest interaction with the cholesterol in terms of bind-

ing energy, through an electrostatic interaction with the 3b

hydroxyl moiety. Additional interacting residues include a

tryptophan and leucine in helix IV, as well as a tyrosine on

helix II. A further cholesterol binding motif, found in

membrane proteins known to bind cholesterol, has also

been reported in GPCRs whose activity is influenced by

cholesterol, including rhodopsin and the serotonin 1A

receptor [50�]. Direct and indirect interactions have

been demonstrated in vivo using cholesterol analogues
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Figure 2
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Cholesterol binding motif. The 2.8 Å crystal structure of the b2

adrenergic receptor revealed ‘bound’ cholesterol (shown here in light

blue) in a cleft between helices II and IV. On the basis of this data a

conserved cholesterol-binding site for family A GPCRs was proposed,

comprising a tryptophan (or tyrosine), isoleucine (or other bulky aliphatic

residue), and a positively charged residue from helix IV, and tyrosine (or

tryptophan) on helix II [9��].
in combination with measurements of membrane fluidity

and receptor activity. Similar studies carried out on the

oxytocin and cholecystokinin (CCK) receptors have even

revealed a differing role for cholesterol in related receptors;

cholesterol appears to interact directly with the oxytocin

receptor, but to effect CCK activity indirectly by modulat-

ing bilayer properties [51]. Given that the CCK receptor

possesses a CCM this latter observation raises questions

about the interpretation of such sequences. Moreover,

amongst the receptors possessing a CCM are those which

are functionally active in the E. coli membrane, such as the

neurotensin receptor 1 (NTS1) [47] and b2AR [48]. There-

fore, at present it seems that few general principles, if

any, can be drawn with respect to cholesterol–receptor

interactions.

Technical challenges
One of the major limiting factors for GPCR studies has

been the availability of suitable amounts of stable protein

with which to work. Advances in purification method-

ologies are beginning to overcome this hurdle [47], along

with concurrent increases in instrument sensitivity.

Critical to the themes covered here is that methods must
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be chosen which closely mimic the biological context.

The development of successful reconstitution strategies

for GPCRs, for example with NTS1 [20��], will enable

investigation of the effect of bilayer composition on

ligand binding and dimerisation. Furthermore, novel

reconstitution systems will allow a more faithful in vivo
replication of the bilayer [52�], and may enable detailed

study of aspects difficult to recreate such as bilayer

asymmetry. Crystallography, despite revealing exciting

new details of GPCR activation, is often undertaken from

detergent solution, using mutated or antibody-bound

proteins, or in non-native lipid environments any of which

experimental peculiarities carries a risk of generating

artefacts. Even where these do not occur crystal structures

offer little information about the dynamics of receptor–
lipid interactions. For these reasons, magnetic resonance

techniques provide a complement to crystallographic

studies and are far better suited to probing dynamic

interactions at the lipid–protein interface [53]. ESR is

an ideal technique, as a result of its intrinsic dynamic time

scale sensitivity, and protocols first developed in the late

1970s are just as relevant now [54��,55]. NMR is a well-

established approach useful for determining bilayer prop-

erties as exemplified in rhodopsin studies [33,56].

Dynamic lipid–protein interactions have also been suc-

cessfully probed with fluorescence-based approaches and

have significant potential [57]. The complex nature of the

interactions mean MD simulations can be useful to

simplify the problem and give a holistic view of process

[40,58–60], and PWR has shown potential for studying the

lipid-dependence of the association of GPCRs with mem-

brane [37,61�].

Conclusions
Although the membrane bilayer shares a close relation-

ship with the complex signalling pathways of GPCRs, the

‘how’, ‘when’ and ‘why’ of this relationship remains less

clear and, if we are to fully understand GPCR activation,

must be the focus of future studies. From studies with

rhodopsin it is evident that an intricate balance of bilayer–
rhodopsin interactions tightly regulates receptor function,

with recent data beginning to unravel the mechanistic

details and energetic contributions of the different bilayer

parameters [34��,62]. Determining whether the applica-

bility of these principles extends to other GPCRs will

only be achieved through detailed investigations on the

expanding number of GPCRs now amenable to bio-

physical analysis. The varied influence of cholesterol in

terms of mode-of-action and receptor response is striking

and its link to putative lipid domains may go some way to

explaining the regulatory mechanisms of GPCR acti-

vation. The possibility of specific cholesterol binding

sites on receptors warrants further investigation; and

the exact role of cholesterol with each individual receptor

must be studied carefully. Finally, with the caveat that

one should remain mindful of receptor functionality and

biological context when using model membranes and
tween lipids, cholesterol and GPCR activation, Curr Opin Struct Biol (2011), doi:10.1016/

www.sciencedirect.com

http://dx.doi.org/10.1016/j.sbi.2011.09.007
http://dx.doi.org/10.1016/j.sbi.2011.09.007


Uncovering the intimate relationship between lipids, cholesterol and GPCR activation Oates and Watts 5

COSTBI-935; NO. OF PAGES 6
other non-native environments, there are a range of

techniques both well-established and novel which will

no doubt lead to a much greater understanding of GPCR–
bilayer interactions.
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