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type 1 insulin-like growth factor receptor (IGF-1R) is a transmembrane glycoprotein composed of two
ellular α subunits and two β subunits with tyrosine kinase activity. The IGF-1R is frequently upregulated
cers and signals from the cell surface to promote proliferation and cell survival. Recent attention has
d on the IGF-1R as a target for cancer treatment. Here, we report that the nuclei of human tumor cells
n IGF-1R, detectable using multiple antibodies to α- and β-subunit domains. Cell-surface IGF-1R trans-
s to the nucleus following clathrin-mediated endocytosis, regulated by IGF levels. The IGF-1R is unusual
transmembrane receptors that undergo nuclear import, in that both α and β subunits traffic to the
s. Nuclear IGF-1R is phosphorylated in response to ligand and undergoes IGF-induced interaction with
atin, suggesting direct engagement in transcriptional regulation. The IGF dependence of these phenom-
dicates a requirement for the receptor kinase, and indeed, IGF-1R nuclear import and chromatin binding
blocked by a novel IGF-1R kinase inhibitor. Nuclear IGF-1R is detectable in primary renal cancer cells,

lin-fixed tumors, preinvasive lesions in the breast, and nonmalignant tissues characterized by a high
ration rate. In clear cell renal cancer, nuclear IGF-1R is associated with adverse prognosis. Our findings
prolife

suggest that IGF-1R nuclear import has biological significance, may contribute directly to IGF-1R function, and
may influence the efficacy of IGF-1R inhibitory drugs. Cancer Res; 70(16); 6412–9. ©2010 AACR.
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type 1 insulin-like growth factor receptor (IGF-1R)
tes proliferation and cell survival and is recognized
attractive cancer treatment target (1). Following
slational insertion into the endoplasmic reticulum
s a 220-kDa proreceptor, the IGF-1R is cleaved in
ans-Golgi network to generate mature α subunits
Da) and β subunits (98 kDa) linked by disulfide bonds
ter trafficking to the plasma membrane, IGF-1Rs are
ted by IGFs and then internalized and degraded or
ed to the cell surface (3, 4). Whereas other receptor
e kinases (RTK) are known to undergo nuclear trans-
on (5–8), nuclear IGF-1R has not been reported in
although it was detected in hamster kidney
g on our studies of IGF signaling in prostate
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r and renal cell cancer (RCC; refs. 10–13), we hypoth-
that the IGF-1R undergoes nuclear translocation in
tumors.

rials and Methods

an DU145 prostate cancer, 786-0/EV RCC, and
breast cancer cells were from Cancer Research UK.
R–null murine fibroblasts (R− cells) and isogenic
lls expressing human IGF-1R were from Renato
a (Kimmel Cancer Center, Thomas Jefferson University,
elphia, PA). Primary RCC cultures were generated
aggregation of fresh tumors and stained for pan-
ratin (Abcam). Cells were transfected with IGF-1R
017521), caveolin (#SI00027720), or control (#1022076)
s (Qiagen) using Oligofectamine (Invitrogen). The
R antibody MAB391 was from R&D Systems.
53801 (from Elizabeth Anderson, AstraZeneca, United
om) is an ATP-competitive IGF-1R tyrosine kinase
tor that shows ∼10-fold selectivity over the insulin
or. The IC50 values for inhibition of IGF-1R and insulin
or phosphorylation in vitro are 2.1 and 19 nmol/L,
tively. The IC50 for inhibition of IGF-1R–driven prolif-
n in 3T3 mouse fibroblasts transfected with human
is 17 nmol/L, whereas the IC50 for epidermal growth
receptor (EGFR)–driven proliferation is 440 nmol/L.
53801 has been tested against a wide range of other

nt kinases, where IC50s are generally >1 μmol/L or the
und has little or no inhibitory activity at 10 μmol/L.
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nofluorescence
s were cultured in complete medium or serum starved
ght and treated with long-R3 IGF-I (SAFC Biosciences),
, insulin (Sigma-Aldrich), or solvent. Some cultures were
ated with solvent (DMSO), 300 nmol/L dibenzazepine
ochem), 300 μmol/L dansylcadaverine (Sigma-Aldrich),
ol/L dynasore (Sigma-Aldrich), or AZ12253801. Immu-
ning used antibodies to IGF-1Rβ COOH terminus [3027,
gnaling Technology (CST)], IGF-1Rβ NH2 terminus (H-
nta Cruz), IGF-1Rα [24-31 (Ken Siddle, Department of
al Biochemistry, University of Cambridge, Cambridge,
r αIR3 (#GR11L, Calbiochem)], calnexin, nucleolin, or
olymerase II (Abcam). Images were acquired on a
10 confocal microscope (Zeiss). Photomicrographs
mid-slice confocal images through the nucleus, ×63
ification unless stated otherwise. Fluorescence was
ified using ImageJ software in 20 to 30 cells for each
ion, and statistical analysis used GraphPad Prism v5.

ractionation, immunoblotting, and
noprecipitation
ole-cell extracts were prepared in radioimmunopreci-
n assay buffer (14). Nuclear extraction used nuclear
tion reagents (Panomics) to disrupt cells in hypoton-
fer A, and nuclear proteins were released with buffer
h salt with detergent). Whole-cell, non-nuclear, and
r fractions and chromatin extracts were analyzed
S-PAGE and immunoblotting for IGF-1Rα (Santa
IGF-1Rβ (3027, CST), phosphorylated IGF-1R (Y1135-
), lamin, calnexin (Abcam), golgin-84 (BD Biosciences),
M (clone AUA1, Cancer Research UK), β-tubulin
-Aldrich), and Hes1 (gift of Dr. Tatsuo Sudo, Toray
ries, Kamakura, Japan). Extracts were immunopreci-
with IGF-1Rβ antibody (3027, CST) or rabbit IgGs

-Aldrich); see Supplementary Data.

nohistochemistry
an tissue was used under National Research Ethics

s 04/Q1606/96, 07/H0606/120, and 09/H0606/5. Forma-
d whole mount and tissue microarray (TMA) sections
mmunostained for IGF-1Rβ (3027, CST) and IGF-1Rα
). IGF-1R intensity and distribution were scored as de-
d (10, 13, 15). Contingency tables were analyzed using
n's χ2 test to assess relationships between IGF-1R and
l parameters. Survival was measured from nephrecto-
death or last follow-up, and survival curves were esti-
by the Kaplan-Meier method. Prognostic factors were
ted in multivariate analyses by Cox proportional ha-
regression. These analyses used the STATA package
(Stata Corporation).

lts and Discussion

hypothesized that the IGF-1R undergoes nuclear im-
nd indeed could detect intracellular IGF-1R in prostate
(Fig. 1A), RCC, and breast cancer cells (Supplementa-
. S1). Intracellular IGF-1R was attenuated by IGF-1R
ilencing, was not wholly attributable to receptor within

port in
nuclea

acrjournals.org
d seemed to overlie the nucleus, sparing the nucleoli
A and B). Detection of nuclear receptor was unrelated
-1R levels per se: IGF-1R–overexpressing R+ cells
ned negligible nuclear IGF-1R (Supplementary Fig. S1).
ar translocation of other RTKs can involve import of
gth receptor or enzymatic release of receptor intra-
r domains, each process initiated when receptor is
ed by ligand (5, 7, 8). We found that serum-starved
howed prominent membrane IGF-1R that diminished
GF-I treatment (Fig. 1C), consistent with receptor in-
ization and degradation (3). Persisting IGF-1R showed
ce of nuclear accumulation 15 to 60 minutes after
on of 30 to 50 nmol/L IGF-I (Fig. 1C and D; Supple-
ry Fig. S2). IGF-1R nuclear import was also enhanced
-II, but only modestly by insulin, correlating with the
itude of ligand-induced receptor phosphorylation
lementary Fig. S3) and with the known affinity of
ligands for IGF-1R (2).
IGF-1R β-subunit is reportedly a substrate for γ-

ase, liberating 50- to 52-kDa intracellular domains in
lls (16). However, IGF-1R distribution was unaffected
ecretase inhibition in prostate cancer cells (Fig. 2A),
e detected full-length IGF-1Rα and IGF-1Rβ in nucle-
ract (Fig. 2B). Furthermore, nuclear IGF-1R was detect-
sing antibodies to β-subunit extracellular domain
lementary Fig. S4A) and α-subunit, which also
d IGF-induced nuclear accumulation (Fig. 2C; Sup-
ntary Fig. S4B). Therefore, our data do not support
etase–dependent cleavage, but instead suggest a model
ch full-length IGF-1R translocates to the nucleus. Other
gth receptors known to undergo nuclear translocation

onomers (5, 8); to our knowledge, IGF-1R is the only ex-
of a receptor that traffics as multiple subunits to the
s.
IGF-1R undergoes both caveolin- and clathrin-mediat-
ocytosis (4, 17). Consistent with the contribution of the
to EGFR nuclear import (5, 18), nuclear IGF-1R translo-
was inhibited by dansylcadaverine (P < 0.001) and the
in-1 inhibitor dynasore (P < 0.05), inhibitors of clathrin-
dent endocytosis, and by bafilomycin A1 (P < 0.001),
blocks endosomal acidification, but not by caveolin-1
ion (Fig. 2D; Supplementary Fig. S5). Post-endosomal
trafficking involves translocation to the ER, removal
the lipid bilayer by association with a component of
c61 translocon (6), and nuclear import in complex with
tins (5, 18). The IGF-1R lacks a canonical nuclear local-
sequence, and we could not detect binding to impor-

(not shown). Neither was there evidence of interaction
en nuclear IGF-1R and the adaptor protein insulin-
tor substrate 1, which can undergo nuclear import
but is predominantly cytoplasmic in DU145 cells
hown). While our article was under review, Sehat and
gues reported that the IGF-1R undergoes nuclear trans-
n and showed that this is regulated by SUMOylation,
eviously known to influence RTK localization (20).
noted that IGFs and insulin induced IGF-1R nuclear im-

proportion to their ability to activate the receptor, and
r IGF-1Rβ was phosphorylated in response to ligand

Cancer Res; 70(16) August 15, 2010 6413
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1. IGF-I induces IGF-1R nuclear translocation in human tumor cells. A, IGF-1Rβ immunofluorescence in DU145 cells cultured in complete medium.
signal was attenuated by IGF-1R depletion (confirmed in immunoblot to right). B, DU145 cells co-stained for IGF-1R and calnexin or nucleolin.
m-starved DU145 cells were treated with solvent or IGF-I (50 nmol/L, 15 min) and stained for IGF-1Rβ as in A. Arrowheads, examples of punctate
IGF-1R. Original magnification, ×100. D, left, DU145 cells were serum starved or IGF treated (50 nmol/L, 15 min) and stained for IGF-1Rβ and
midino-2-phenylindole (DAPI). Merged images; arrow shows path along which the intensity of IGF-1R (green) and DAPI (blue) is quantified. Center,
overlying DAPI registers ∼50 arbitrary units in starved cells (top) and 100 to 150 units after IGF-I treatment (bottom). Right, quantification of
IGF-1R after treatment with 50 nmol/L IGF-I for 0 to 360 min (left) and 0 to 50 nmol/L IGF-I for 15 min (right). Black columns, mean percent nuclear

; white columns, mean absolute nuclear IGF-1R (arbitrary units); bars, SEM (n = 20–30 cells). Compared with serum-starved cells, nuclear IGF-1R
as enhanced by IGF-I (*, P < 0.05; ***, P < 0.001).

r Res; 70(16) August 15, 2010 Cancer Research
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2. Full-length IGF-1R α and β subunits undergo nuclear import following clathrin-dependent endocytosis. A, DU145 cells were treated with
zepine (DBZ; 300 nmol/L, 6 h) and in the final 15 min with 50 nmol/L IGF-I. Graph: mean percent nuclear IGF-1R in serum-starved (black columns)
treated cells (white columns); bars, SEM. Immunoblotting (top right) confirmed DBZ bioactivity in inhibiting expression of the Notch target Hes1.
45 whole-cell extract (WCE), non-nuclear components (Non-nuc), and nuclear extract (NE) immunoblotted for IGF-1R, lamin (nucleus), calnexin (ER),
84 (Golgi), and EpCAM (plasma membrane). C, serum-starved DU145 cells were treated with solvent or IGF-I (50 nmol/L, 15 min) and stained for
α or IGF-1Rβ. D, serum-starved DU145 cells were treated for 4 h with dansylcadaverine (Dc), bafilomycin A1 (Baf), or dynasore (Dn) and in the

min with 50 nmol/L IGF-I. Absolute nuclear IGF-1R was enhanced by IGF-I (**, P < 0.01) and inhibited by Dc, Baf, and Dn (*, P < 0.05; ***, P < 0.001).
mentary Fig. S5A shows images of IGF-treated cells following caveolin-1 depletion.

Cancer Res; 70(16) August 15, 2010acrjournals.org 6415
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3. IGF-1R nuclear import and chromatin binding are blocked by IGF-1R inhibition. A, left, structure of AZ12253801; right, serum-starved DU145 cells
with 50 nmol/L IGF-I in the final 15 min of 1-h incubation with 0.1 to 100 nmol/L AZ12253801. IGF-1Rβ or control (C) immunoprecipitates
for phospho- and total IGF-1Rβ. Supplementary Fig. S6 shows quantification of these results and effects on clonogenic survival. B, DU145 cells
with 50 nmol/L IGF-I in the final 30 min of 6-h incubation with 120 nmol/L AZ12253801. Left, nuclear extracts immunoprecipitated with control
F-1Rβ antibody and probed for phospho- and total IGF-1Rβ. Right, parallel cultures imaged for IGF-1Rβ. IGF-induced nuclear IGF-1R import
ibited by AZ12253801 (P < 0.001, for percent nuclear signal; **, P < 0.01, for absolute nuclear signal). C, serum-starved and IGF-treated cells were

ed for IGF-1Rβ (red) and RNA polymerase II (green). IGF-I enhanced co-localization of IGF-1R with RNA pol II and DAPI (***, P < 0.001). D, after
nt with AZ12253801 and IGF-I as B), IGF-1Rβ was immunoprecipitated from chromatin and probed for IGF-1Rβ and histone H3.

r Res; 70(16) August 15, 2010 Cancer Research
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Figure 4. Nuclear IGF-1R is detectable in human tumors and is
associated with poor prognosis in RCC. A, detection of nuclear
IGF-1Rβ in primary RCC cells. Pancytokeratin positivity confirms
epithelial origin. B, top, IGF-1Rβ immunohistochemistry in RCC (a–c,
h, and i) and prostate cancer (d–g) showing heterogeneous staining,
with nuclear IGF-1R in a, d, g (high-power view of d), and h. Bar,
50 μm (a–e); 10 μm (f–i). Bottom, prostate cancer stained for IGF-1Rα
(24-31) or IGF-1Rβ (3027, CST). Bar, 50 μm. C, numerous human
tumors contain nuclear IGF-1R. a and b, ductal carcinoma of the
breast; c, DCIS; d, non–small-cell lung cancer; e, pancreatic
adenocarcinoma; f, colon cancer; g, lymphoma; h: uterine MMMT;
I, ovarian serous adenocarcinoma. Nuclear IGF-1Rβ detected in
invasive cancers (a, b, d, e, h, and i) and DCIS (c). Bar, 50 μm (a, d–f,
h, and i); 10 μm (b, c, and g). D, TMAs containing 195 clear cell RCCs
stained for IGF-1Rβ and scored for nuclear IGF-1R intensity: 0 (nil),
1 (light), 2 (moderate), and 3 (heavy). Nuclear IGF-1R intensity was

associa

acrjournals.org
ted with adverse prognosis (P = 0.005).

Cancer Res; 70(16) August 15, 2010 6417
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lementary Figs. S3 and S6). Therefore, we interrogated
ntribution of the IGF-1R kinase to nuclear transloca-
sing two classes of IGF-1R inhibitor: the blocking anti-
AB391 and a selective inhibitor of the IGF-1R kinase,

53801 (Fig. 3A; Supplementary Fig. S6). Equimolar con-
tions of each agent inhibited IGF-1R activation, and
tent with previous findings (21), MAB391 downregu-
hole-cell IGF-1R. In whole-cell extracts and in the nu-
compartment, IGF-1R phosphorylation was more
ndly inhibited by AZ12253801 than by MAB391 (Sup-
ntary Fig. S6C). Pretreatment with AZ12253801 at its
r proliferation not only blocked nuclear IGF-1R phos-
ation but also inhibited IGF-1R nuclear import, shown
munoprecipitation from nuclear extract and confocal
scopy (Fig. 3B). These data indicate that IGF-1R kinase
y is required for IGF-1R to enter the nucleus. This infor-
n may have therapeutic relevance: aside from the chal-
of crossing membranes, antibodies may be limited by
ize from entering the nucleus in complex with IGF-1R
e speculate that nuclear IGF-1R activity may be more
vely blocked by small-molecule inhibitors. In consider-
tential functions of the receptor in this newly identified
n, we observed that the distribution of nuclear IGF-1R
miniscent of the speckled pattern characteristic of
nents of the transcriptional machinery (23). Further-
we noted (Fig. 2C) that punctate nuclear IGF-1R was
d principally in less dense regions of DNA, which are
ially more accessible to transcription factors. Indeed,
uld detect IGF-induced co-localization with RNA poly-
e II (Fig. 3C), and binding to chromatin was shown by
cipitation with histone H3 (Fig. 3D). This suggests a
role for the IGF-1R in transcriptional regulation, consis-
ith the recent report of Sehat and colleagues (20) and
he known function of other nuclear RTKs (5, 7).
lly, we investigated the clinical relevance of these find-
uclear IGF-1R was evident in primary RCC cultures
A) and formalin-fixed RCC and prostate cancers, with
d heterogeneity between and within tumors (Fig. 4B).
tent with detection of both IGF-1R subunits in the nu-
cultured tumor cells (Fig. 2B and C), prostate cancers
ned nuclear α- and β-immunoreactivity (Fig. 4B, bot-

Nuclear IGF-1R was detectable in additional tumor Rece

od TL. Insulin-like growth factor type-I receptor internalization
recycling mediate the sustained phosphorylation of Akt. J Biol

em 2007;282:22513–24.
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9. Ch
ter
cri
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and ductal carcinoma in situ (DCIS; Fig. 4C; Supple-
ry Table S1). The IGF-1R seemed almost exclusively
r in some breast and pancreatic cancers and malig-
ixed Müllerian tumor, a rare, aggressive uterine ma-
cy (Fig. 4C). Nuclear IGF-1R was also observed in
epithelia of the esophagus, lung, breast, cervix, and
te and in germ cells in the testis (Supplementary
S1; Supplementary Fig. S7). This pattern suggests an
ation with proliferation, as reported for nuclear EGFR
nally, we analyzed a series of clear cell RCCs, in which
GF-1R expression is reported to have prognostic signif-
(24). Nuclear IGF-1R was detectable in 94 of 195 (48%)
ar cell RCCs. Multivariate analysis identified known
ostic factors (age, tumor grade, stage) and revealed that
al was shorter in patients whose tumors showed in-
(P = 0.005) and/or widespread (P = 0.003) nuclear
(Fig. 4D; Supplementary Table S2).

onclusion, these findings support the concept that nu-
IGF-1R has biological significance. These data provide
sights into IGF biology and may have implications for
IGF-1R inhibitors in cancer therapy.
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