Lothar Schermelleh - Micron Group Leader



Chromatin of higher eukaryotes is folded in a complex manner to form higher-order domains and fibres of variable compaction, demarcated by a network of largely chromatin-void interchromatin spaces and channels leading up to nuclear pores. Compartmentalization into restrictive and permissive local chromatin environments and their confinements to specific nuclear sites are thought to play a major role in the regulation of gene activity, mRNA transport, DNA replication and repair. This large-scale organization is determined by an intricate network of epigenetic factors (histone variants and modifications, DNA methylation, PcG proteins, non-translated RNAs), but also involves numerous structural proteins (e.g., Lamins, NUPs, HP1, Cohesins).


We apply and refine advanced optical imaging methods (e.g., super-resolution structured illumination, single molecule localization, FRAP, laser-microirradiation) to address general rules and dynamic aspects of higher order chromosomal organization in mammalian cell nuclei and its contribution to control genome function. We combine optimized immunolabelling, FISH and GFP-based protocols with customized statistical tools to quantitatively analyse spatial distribution pattern and dynamic properties of factors involved. Comparative super-resolution 3D-mapping data from single cells in defined states are complementing population-wide ChIP-sequencing and chromosome conformation capturing approaches and will contribute to a better understanding of fundamental nuclear processes.


As an integral member of the Micron Advanced Bioimaging Unit, we also work on new correlative super-resolution approaches for live and fixed cell imaging that are expected to be of use for many collaborative research projects within the Oxford research community.



Current Lab Members: Justin Demmerle (Research Assistant), Ezequiel Miron Sardiello (DPhil Student).

Former Lab members: Daniel Smeets (visiting DPhil Student - LMU Munich) , Felix Kraus (Visiting MSc Student - LMU Munich), Michael Grange (Rotating DPhil Student - STRUBI Oxford).

Research Images

Figure 1 Figure 1. (a) Super-resolution imaging of the nuclear periphery with 3D-SIM, compared to conventional confocal laser-scanning microscopy (CLSM). Mouse C2C12 cells are immunostained with antibodies against Lamin B (green) and antibodies recognizing the cytoplasmic face of the nuclear pore complex (NPC, red). DNA is counterstained with DAPI (blue). 3D-SIM reveals a triple layered structural organization as well as chromatin channels underneath individual nuclear pores, which is not resolved with CLSM. Bars: 5 µm and 1 µm (insets). Modified from Schermelleh et al. (2008), Science 320. (b) Chromatin compartmentalization at the nuclear periphery. Schematic overlay of topologically distinct chromatin zones. The stroke width is equivalent to 100 nm, which is about the resolution limit of 3D-SIM. Bar: 1 µm.
Figure 2 Figure 2. Nuclear topography of RNA Pol II studied with 3D SIM, compared to deconvolution wide-field microscopy. Immunolabelling of mouse C127 cell nucleus with Ser-2P RNA Pol II and Pol 3.3 specific antibodies shows the enrichment of RNA Pol II signals at the periphery or on fibrillar protrusions of chromatin domains. Modified from Markaki et al. (2010), Cold Spring Harb Symp Quant Biol. 75.


click here for link to Lothar's CV



  • Hagen C, Dent KC, Zeev-Ben-Mordehai T, Grange M, Bosse JB, Whittle C, Klupp BG, Siebert CA, Vasishtan D, Bäuerlein FJ, Cheleski J, Werner S, Guttmann P, Rehbein S, Henzler K, Demmerle J, Adler B, Koszinowski U, Schermelleh L, Schneider G, Enquist LW, Plitzko JM, Mettenleiter TC, Grünewald K. Structural Basis of Vesicle Formation at the Inner Nuclear Membrane. Cell. 2015 Dec 17;163(7):1692-701.
  • Ball G, Demmerle J, Kaufmann R, Davis I, Dobbie IM, Schermelleh L. SIMcheck: a Toolbox for Successful Super-resolution Structured Illumination Microscopy. Sci Rep. 2015 Nov 3;5:15915.
  • Demmerle J, Wegel E, Schermelleh L, Dobbie IM. Assessing resolution in super-resolution imaging. Methods. 2015 Oct 15;88:3-10.
  • Moindrot B, Cerase A, Coker H, Masui O, Grijzenhout A, Pintacuda G, Schermelleh L, Nesterova TB, Brockdorff N. A Pooled shRNA Screen Identifies Rbm15, Spen, and Wtap as Factors Required for Xist RNA-Mediated Silencing. Cell Rep. 2015 Jul 28;12(4):562-72.


  • Conduit PT, Richens JH, Wainman A, Holder J, Vicente CC, Pratt MB, Dix CI, Novak ZA, Dobbie IM, Schermelleh L, Raff JW. A molecular mechanism of mitotic centrosome assembly in Drosophila. Elife. 2014 Aug 22;3:e03399.
  • Cooper S, Dienstbier M, Raihann H, Schermelleh L, Sharif J, Blackledge N, de Marco V, Elderkin S, Koseki H, Klose R, Heger A, Brockdorff N. 2014. Targeting polycomb to pericentric heterochromatin in ES cells reveals a role for H2AK119u1 in PRC2 recruitment. Cell Rep. 2014 Jun 12;7(5):1456-70.
  • Smeets D, Markaki Y, Schmid VJ, Kraus F, Tattermusch A, Cerase A, Sterr M, Popken J, Leonhardt H, Brockdorff N, Cremer T*, Schermelleh L*, Cremer M*. 2014. 3D super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci. Epigenetics Chromatin. 2014 Apr 28;7:8. (*co-corresponding).
  • Osseforth C, Moffitt JR, Schermelleh L, Michaelis J. 2014. Simultaneous dual-color 3D STED microscopy. Opt Express. 22: 7028-39.
  • Smeets D, Neumann J, Schermelleh L. 2014. Application of three-dimensional structured illumination microscopy in cell biology – pitfalls and practical considerations. In Super-Resolution Microscopy Techniques in the Neurosciences, Neuromethods Vol. 86, Fornasiero E, Rizzoli S (Eds.) Springer. 167-88.
  • Cerase A, Smeets D, Tang AY, Gdula M, Kraus F, Spivakov M, Moindrot B, Leleu M, Tattermusch A, Demmerle J, Nesterova T, Green C, Otte AP, Schermelleh L, Brockdorff N. 2014. Spatial separation of Xist RNA and polycomb proteins revealed by super-resolution microscopy. Proc Natl Acad Sci USA 111: 2235-40.
  • Lesterlin C, Ball G, Schermelleh L, Sherratt D. 2014. DRecA bundles mediate homology pairing between distant sisters during DNA break repair. Nature. 506: 249-53.


Genes and Development Cover
  • Hahn M, Dambacher S, Dulev S, Kuznetsova AY, Eck S, Wörz S, Sadic D, Schulte M, Mallm J, Maiser A, Debs P, von Melchner H, Leonhardt H, Schermelleh L, Rohr K, Rippe K, Storchova Z, Schotta G (2013). Suv4-20h2 mediates chromatin compaction and is important for cohesin recruitment to heterochromatin. Genes Dev. Epub April 18.
  • Bergink S, Ammon T, Kern M, Schermelleh L, Leonhardt H, Jentsch S. Role of Cdc48 (p97) as a SUMO-targeted segregase curbing Rad51-Rad52 interaction. Nat Cell Biol, Epub April 28.
  • Schneider K, Fuchs C, Dobay A, Rottach A, Qin W, Wolf P, Alvarez-Castro JM, Nalaskowski MM, Kremmer E, Schmid V, Leonhardt H, Schermelleh L. Dissection of cell cycle-dependent dynamics of Dnmt1 by FRAP and diffusion-coupled modeling. Nucleic Acids Res. 2013 Mar 27.
  • Markaki Y, Smeets D, Cremer M, Schermelleh L. Fluorescence in situ hybridization applications for super-resolution 3D structured illumination microscopy. Methods Mol Biol. 2013;950:43-64.


Advanced Functional Materials cover
  • Lebold, T., A. Schlossbauer, K. Schneider, L. Schermelleh, H. Leonhardt, T. Bein, C. Bräuchle. Controlling the mobility of oligonucleotides in the nanochannels of mesoporous silica. Adv Funct Mat. 22: 106-112.
  • Sonnen KF, Schermelleh L, Leonhardt H, Nigg EA. 3D-structured illumination microscopy provides novel insight into architecture of human centrosomes. Biol Open. 2012 Oct 15;1(10):965-76.
  • Dunsch AK, Hammond D, Lloyd J, Schermelleh L, Gruneberg U, Barr FA. Dynein light chain 1 and a spindle-associated adaptor promote dynein asymmetry and spindle orientation. J Cell Biol. 2012 Sep 17;198(6):1039-54. Epub 2012 Sep 10.
  • Ratnakumar K., L. F. Duarte, G. LeRoy, D. Smeets, M. De Gobbi, D. Y. Zhang, C. Vardabasso, C. Bönisch, S. B. Hake, D. R. Higgs, L. Schermelleh, B. A. Garcia, E. Bernstein. ATRX-mediated chromatin association of histone variant macroH2A1 regulates alpha globin expression. Genes & Development, Genes Dev. 26: 433-8.
  • Bönisch C, Schneider K, Pünzeler S, Wiedemann SM, Bielmeier C, Bocola M, Eberl HC, Kuegel W, Neumann J, Kremmer E, Leonhardt H, Mann M, Michaelis J, Schermelleh L*, Hake SB. 2012. H2A.Z.2.2 is an alternatively spliced histone H2A.Z variant that causes severe nucleosome destabilization. Nucleic Acids Res. Epub Mar 29 (*co-corresponding author).
  • Mikeladze-Dvali T, von Tobel L, Strnad P, Knott G, Leonhardt H, Schermelleh L, Gönczy P. 2012. Analysis of centriole elimination during C. elegans oogenesis. 2012. Development. 139:1670-9
  • Markaki Y, Smeets D, Fiedler S, Schmid VJ, Schermelleh L, Cremer T, Cremer M. 2012. The potential of 3D-FISH and super-resolution structured illumination microscopy for studies of 3D nuclear architecture. Bioessays. 34: 412-26.
  • Hochstatter J, Holzel M, Rohrmoser M, Schermelleh L, Leonhardt H, Keough R, Gonda TJ, Imhof A, Eick D, Langst G, Nemeth A. 2012. Myb-binding protein 1a (Mybbp1a) regulates levels and processing of Pre-ribosomal RNA. J Biol Chem. Epub May 29.


  • Guizetti, J., L. Schermelleh, J. Mäntler, S. Noser, I. Poser, H. Leonhardt, T. Müller-Reichert, and D.W. Gerlich. Cortical constriction during abscission involves helices of ESCRT-III-dependent filaments. Science. 331: 1616-1620.
  • Markaki, Y., M. Gunkel, L. Schermelleh, S. Beichmanis, J. Neumann, M. Heidemann, H. Leonhardt, D. Eick, C. Cremer, and T. Cremer. Functional nuclear organization of transcription and DNA replication: a topographical marriage between chromatin domains and the interchromatin compartment. Cold Spring Harb Symp Quant Biol. 75:475-92.
  • Cordes T., A. Maiser, C. Steinhauer, L. Schermelleh*, and P. Tinnefeld. 2011. Mechanisms and advancement of antifading agents for fluorescence microscopy and single-molecule spectroscopy. Phys Chem Chem Phys. 13: 6699-6709 (*co-corresponding author).
  • Larochelle, N., R. Stucka, N. Rieger, L. Schermelleh, G. Schiedner, S. Kochanek, E. Wolf, and H. Lochmuller. Genomic integration of adenoviral gene transfer vectors following transduction of fertilized mouse oocytes. Transgenic Res. 20: 123-35.


For further publications visit pubmed