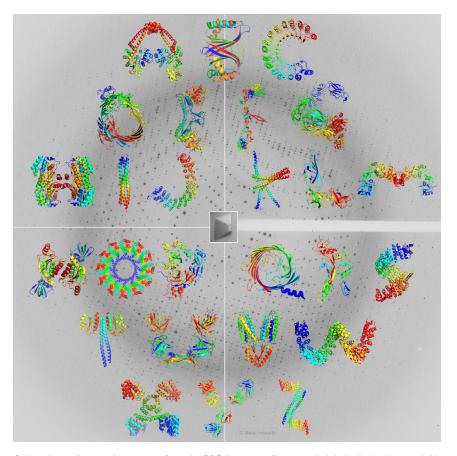
CORRESPONDENCE

Say it with proteins: an alphabet of crystal structures

From manual searching of the Protein Data Bank (PDB), I have curated a set of protein crystal structures corresponding to the capital letters of the Roman alphabet (**Fig. 1**). In choosing structures, I aimed to include a range of different structural motifs and to exclude nucleic acids or proteins solved while bound to nucleic acids. Sometimes these letter shapes seem to be incidental, and sometimes the shape is key to the protein's biological function. For example, the specific shape is likely to be important for L (from elongation factor P), which mimics the shape of tRNA; for the sinuous W (from DNA-binding domain from BurrH), which tracks DNA's major groove for modular sequence recognition; and for proteins with holes that enclose DNA (*A*, from DNA gyrase) or puncture the membrane (*O*, from the toxin cytolysin A). PDB accession codes and descriptions of function for all proteins are provided in **Supplementary Table 1**. This set may be useful for outreach and teaching, by drawing attention to the diversity of protein structures attained by natural selection. It is conceivable that the set may also have value in bionanotechnology and synthetic biology, in which at times molecular assembly needs a specific shape more than a specific function.

Note: Any Supplementary Information and Source Data files are available in the online version of the paper (doi:10.1038/nsmb.3011).

ACKNOWLEDGMENTS


Funding was provided by Worcester College Oxford. I thank E. Lowe (University of Oxford) for the diffraction image.

COMPETING FINANCIAL INTERESTS The author declares no competing financial interests.

Mark Howarth

Department of Biochemistry, Oxford University, Oxford, UK.

e-mail: mark.howarth@bioch.ox.ac.uk

Figure 1 A protein alphabet. Selected protein crystal structures from the PDB in cartoon format and alphabetical order, overlaid on a diffraction image (provided by E. Lowe), with a central bright-field image of a protein crystal. Proteins are colored with the chainbows format, with the N terminus of each chain in blue through to the C terminus in red. Proteins are shown in monomeric (*C*, *D*, *G*, *J*, *L*, *P*, *Q*, *W*), homodimeric (*A*, *B*, *E*, *M*, *N*, *T*, *V*, *X*), heterodimeric (*R*, *S*), homotrimeric (*I*), heterotrimeric (*D*) forms.

Supplementary Information

Say it with proteins: an alphabet of crystal structures

Mark Howarth, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK. mark.howarth@bioch.ox.ac.uk **Supplementary Table 1** PDB code, general function and distinctive features of alphabetical protein structures.

Letter	Image	PDB code	Function	Comments
A	Stark:	<u>3ifz</u>	DNA topology	DNA gyrase reaction core from <i>Mycobacterium tuberculosis</i> ; target of antibiotics.
В		<u>2qyc</u>	Unknown	Ferredoxin-like protein from <i>Bordetella bronchiseptica</i> .
С		2bnh	Blocking RNA degradation	Ribonuclease inhibitor from pig (<i>Sus scrofa</i>); contains leucine-rich repeats; RNase binds to the center of the protein with exceptional affinity.
D		<u>4j3o</u>	Pore for export of adhesion proteins	FimD from <i>Escherichia coli</i> forms the usher pore; contains a 24-stranded β -barrel; non-pore subunits were removed to generate the image.
Е	X	<u>2q5r</u>	Milk sugar metabolism	Tagatose-6-phosphate kinase from <i>Staphylococcus aureus</i> ; β-clasp dimer interface.
F	No.	<u>3j04</u>	Smooth muscle contraction	Fragments of myosin-11, myosin regulatory light chain 2, and myosin light polypeptide 6 from chicken (<i>Gallus</i> <i>gallus</i>); structure from electron crystallography of 2D array.
G		<u>4u48</u>	Protease inhibitor	α^2 -macroglobulin from <i>Salmonella</i> <i>enterica</i> ; mimics the α^2 -macroglobulins in eukaryotic innate immunity.
Н		<u>1xu9</u>	Steroid metabolism	 11β-hydroxysteroid dehydrogenase type I from <i>Homo sapiens</i>; catalyzes interconversion of cortisone and cortisol; 4-helix bundle mediates tetramerization.
Ι		<u>3h7x</u>	Bacterial adhesion	Stalk domain of YadA adhesin from <i>Yersinia enterocolitica</i> ; trimeric coiled-coil.
J	All and a second	<u>1b3u</u>	Intracellular signaling	PR65/A subunit of Protein Phosphatase 2A from <i>Homo sapiens</i> ; contains 15 HEAT motifs.
K	×	<u>40x0</u>	Gene regulation	Keratin-like domain of transcription factor SEPALLATA3 from <i>Arabidopsis thaliana</i> .
L	A Contraction of the second se	<u>lueb</u>	Protein synthesis	Elongation Factor P from <i>Thermus</i> <i>thermophilus</i> ; three β -barrels, mimicking charge and L-shape of transfer RNA.

			D	
М		<u>10u5</u>	Protein synthesis	ATP(CTP):tRNA nucleotidyltransferase from <i>Homo sapiens</i> ; adds CCA trinucleotide to 3' of transfer RNA.
N		<u>1z85</u>	RNA methyl- transferase (predicted)	Hypothetical protein TM1380 from <i>Thermotoga maritima</i> ; β -barrel and 3-layer sandwich.
0		<u>2wcd</u>	Bacterial toxin	Cytolysin A from <i>Escherichia coli</i> ; 12 copies of 3-helix bundle.
Р		<u>3afc</u>	Development of nervous system and blood vessels	Semaphorin 6A extracellular domain from mouse (<i>Mus musculus</i>); contains β-propeller fold.
Q		<u>3szv</u>	Membrane channel	OccK3 outer membrane channel from <i>Pseudomonas aeruginosa</i> ; 18-stranded β-barrel.
R	J.	2arp	Regulation of differentiation and inflammation	Activin A from <i>Homo sapiens</i> bound to a fragment of follistatin from rat (<i>Rattus norvegicus</i>).
S	and the second	<u>20t8</u>	Nuclear import	Transportin-1 from <i>Homo sapiens</i> recognizing a nuclear localization signal; contains HEAT repeats.
Т	EXAMPLE	<u>3e98</u>	Unknown	GAF domain from <i>Pseudomonas</i> aeruginosa.
U		<u>2vwe</u>	Control of blood vessel formation	Vascular Endothelial Growth Factor-B from <i>Homo sapiens</i> bound to neutralizing antibody fragment.
V	Ŵ	<u>3h90</u>	Metal ion transport	YiiP zinc transporter from <i>Escherichia coli</i> .
W		<u>4cj9</u>	DNA-binding protein	DNA-binding domain of BurrH from <i>Burkholderia rhizoxinica</i> ; helix-loop-helix repeats with modular DNA-binding specificity; potentially useful for genome editing.
X		<u>1w3b</u>	Protein glycosylation	Tetratricopeptide repeat domain of O- linked N-acetylglucosamine transferase from <i>Homo sapiens</i> .
Y		<u>ligt</u>	Immune defence	IgG2a antibody from mouse (<i>Mus musculus</i>); flexibility of arms relates to recognition of targets.
Z	Vini	<u>4bta</u>	Collagen stabilization	Part of collagen prolyl 4-hydroxylase from <i>Homo sapiens</i> ; 4-helix bundle for dimerization; substrate peptide bound.